If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5d^2+48d-180=0
a = 5; b = 48; c = -180;
Δ = b2-4ac
Δ = 482-4·5·(-180)
Δ = 5904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5904}=\sqrt{144*41}=\sqrt{144}*\sqrt{41}=12\sqrt{41}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{41}}{2*5}=\frac{-48-12\sqrt{41}}{10} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{41}}{2*5}=\frac{-48+12\sqrt{41}}{10} $
| -3x+6+x=76 | | 5d^2+28d-180=00 | | 5n+35=10n-135 | | 10/4=8/k | | x2-3x+6=10-x+x2 | | -3x+6=76 | | 5n+8=243 | | 3n=570 | | (x+2)(x+2)=x2-4 | | -22=-5x-7 | | 25=5(9x-4 | | 256^-2=16^3x-1 | | 1x+3/4=7/8 | | 1/2+1b=11/16 | | 3m=3m-5 | | 1+44x=12 | | 1+2x-5=-14+2x-2x | | 12x+2=6x-2 | | Y=-0.43x+405 | | 10-3(x-1)=2-2x | | 12x+2=10x-6 | | 57/x=38/6 | | 12x+6=8x-4 | | x/57=6/38 | | 20x+5=14x-3 | | x+28=86 | | -14+x=-76 | | 14+x+3x=x-4 | | 100x+8x=175+5x | | f(6)=6(4-2(6) | | X+y+y=126 | | 5^5a-2=2^2a+1 |